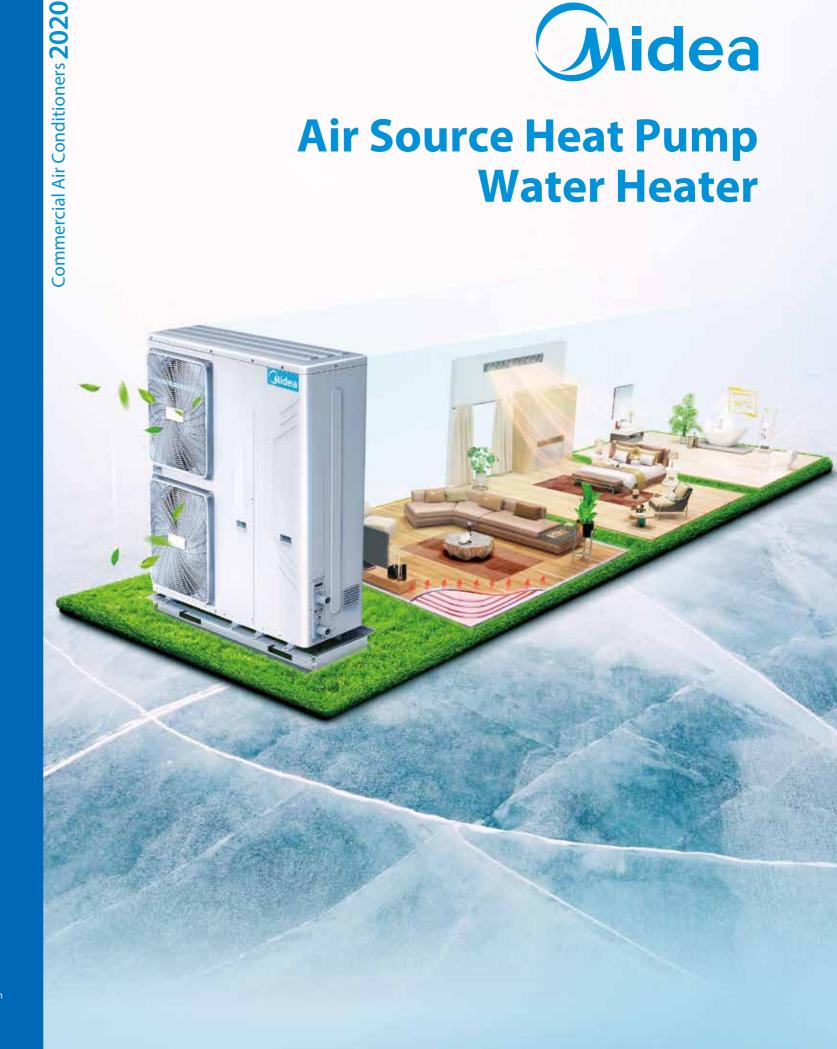
2006-1H2001

Air Source Heat Pump Water Heater

Midea Group


Add.: Midea Headquarters Building, 6 Midea Avenue, Shunde, Foshan, Guangdong, China

Postal code: 528311

cac midea.com www.midea-group.com

Note: Product specifications change from time to time as product improvements and developments are released and may vary from those in this document

GD MIDEA Heating & Ventilating Equipment Co. Ltd participates in the ECP programme for VRF. Check ongoing validity of certificate: WWW. eurovent-certification. com

Midea CAC

Midea CAC is a key division of the Midea Group, a leading producer of consumer appliances and provider of heating, ventilation and air conditioning solutions. Midea CAC has continued with the tradition of innovation upon which it was founded, and emerged as a global leader in the HVAC industry. A strong drive for advancement has created a groundbreaking R&D department that has placed Midea CAC at the forefront of a competitive field. Through these independent efforts and joint cooperation with other global enterprises, Midea has supplied thousands of innovative solutions to customers worldwide.

There are four production bases: Shunde, Chongqing, Hefei and Italy.

MCAC Shunde: 38 product lines focusing on VRF, Split Products, Heat Pump Water Heaters, and AHU/FCU.

MCAC Chongqing: 14 product lines focusing on Water Cooled Centrifugal/Screw/Scroll Chillers, Air Cooled Screw/Scroll Chillers and AHU/FCU.

MCAC Hefei: 11 product lines focusing on VRF, Chillers and Heat Pump Water Heaters.

Clivet S.p.A: 50,000m2 workshop in Feltre and Verona, covering products such as ELFO system, hydronic, WHLP, packaged, split and close control and so on.

- 2018-2019 >>> Launched the new generation of R32 M-Thermal products, including Mono and Split type. 2016 >>> Acquired 80% stake in Clivet Launched the new generation of R410A M-Thermal products, including Mono and Split type. 2015 X with Carrier in China in chiller field, BOSCH in VRF production and Siix in smart control. 2013 >> Launched combo type 300L products with enamel water tank. 2012 >> Introduced the professional production line EISENMAN from German. 2011 \gg Launched the first generation of M-thermal products.
 - 2010 >>> Built the 3rd manufacturing base in Hefei.
 - 2008 >> Launch the first generation of combo type products.
 - 2007 \rightarrow Cooperated with GE to develop combo type air source heat pump.
 - 2004 >> Launch the first generation of direct heating products.
 - 2003 >> Entered the air source heat pump field and launched the first generation cycle heating products.
 - 1999 >>> Entered the CAC field.

MCAC Learning Academy

Objective

Midea CAC Learning Academy aims to provide training to the sales personnel as well as technical personnel in order to increase the utilization for your Midea CAC equipment. Once you have purchased equipment from Midea CAC, taking care of the equipment is topmost priority. Midea CAC Learning Academy offers training courses to learn firsthand from the manufacturer what it takes to get the best out of your Midea CAC product. The goal of Midea CAC Learning Academy is to provide product specific training, safe work procedures and expertise in carrying out the installation and maintenance of Midea CAC products as well as teaching the main selling points in order to help the sales people sell the Midea CAC products with ease.

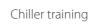
Training Centers

Our world class training centers provide knowledge and skills necessary to efficiently deploy Midea CAC technologies. The training centers include dedicated laboratories to provide hands-on experiences with various systems, components and controls to refresh and enhance the skills of your sales, design and installation and service teams. Right now we operate our trainings from the below two locations:

1. Midea CAC Training Center

Address: Midea CAC Training Center, 2nd Floor, Building 6, Midea Global Innovation Center, Beijiao, Shunde, Foshan, China Pin- 528311

The Midea CAC Training Center is situated 30 kilometers from Baiyun Guangzhou International Airport. Products: VRF, M-Thermal


2. Chongqing Midea Training Center

Address: No. 15, Qiangwei Road, Nan'an District, Chongqing, China Chongqing Midea Training Center is 35 kilometers from Chongqing International Airport. Products: Centrifugal Chiller, Screw/Scroll Chiller and Terminals

VRF training

M-Thermal training

Global Technical Trainings

The training courses by Midea CAC Learning Academy are divided into the following two categories with different targeted audiences for each.

Design and Application Trainings: The design and application trainings for various products are basically for the sales personnel selling Midea CAC products in order to give them basic understanding about the main features. The trainings are conducted on a global level inviting sales engineers, technical engineers, consultants and project designers from different parts of the world.

Main Courses Offered:

- 1. Introduction to main Selling points and Features
- 2. Installation and Commissioning
- 3. Control Systems
- 4. Selection Software

Products: VRF, M-Thermal, Chillers and Terminals

After Sales- Service Trainings: These trainings are dedicated for the After Sales/ Service personnel in order for them to better carry out the installation, commissioning and maintenance of Midea CAC products. Technical person and engineers from different parts of the world are invited to take part in these trainings. Main Courses Offered:

- 1. Product Electric Control and Refrigerant System
- 2. Control Systems
- 3. Installation and Commissioning Demonstration
- 4. Troubleshooting and Maintenance

Products: VRF, M-Thermal, Chillers and Terminals

Highly Skilled Trainers: The trainers for various courses by Midea CAC Learning Academy are expert people with vast experiences in their field. Most of them have a deep insight about the global HVAC market and help the attendees to better understand the CAC products.

Training Certificates:

The attendees for Global trainings are provided a training certificate highlighting the courses discussed in the training, signed by Mr. Jason Zhao, General Manager of Midea CAC Overseas Sales Company.

Registration:

You can contact your respective Midea contact point to provide you with the complete schedule about the global technical trainings as well as how to register for these trainings.

Reference projects

Aston Kuta Bali Hotel (Five Star)

Country:	Indonesia
City:	Bali
Completion Year:	2010

Sheraton Band	lara Resort Hotel (Five Star)
Country:	Indonesia

country.	Indones
City:	Jakarta
Completion Year:	2011

1					
~					
100					
-			-		
	-	and here all	MILLI		
1.000	1		Martin Ka		
			and the second s		
			And Designed	-	
		TT	I DESCRIPTION AND ADDRESS AND		
	and the second		and in case	States -	
	all and a	and a local design of the	PROFESSION OF		
	- Contraction		Case in case		
	- Internation		No. of Concession, Name		
			Jur-	-	
Sec.	A - H - H		78	VIEL	and a
2 Prizes	70 7				
	JU T		t) ale	and a star	-
0			- Canada	- 200-	-
al in	Alles -		4	-	

Ramada Plaza (Five Star)

Country:	ł
City:	į
Completion Year:	

- China
- Shunde
- 2009

Reference projects

Grand Aston Tunjungan (Five Star)

Country:	Indonesia
City:	Surabaya
Completion Year:	2013

The Royale Springhill Residences

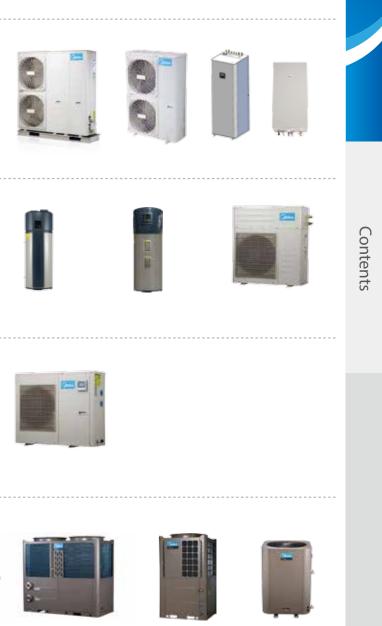
Country:	
City:	
Completion	١

Indonesia Jakarta Year: 2010

Reference projects

Agile Estate (Clear Water Bay)			
China			
Sanya			
2011			

Shanghai Fudan U	Shanghai Fudan University (Dormitory Building)		
Country:	China		
City:	Shanghai		

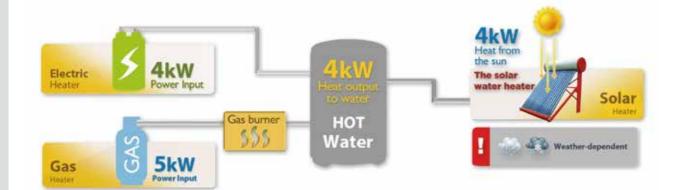

Contents

13 M-Thermal

38 Sanitary Hot Water

45 Swimming Pool Application

49 Commercial Heat Pump Water Heater



Introduction

Why choose an air source heat pump?

Typically around 3kWh of energy can be captured for every 1kWh of electrical energy expended, giving almost 4kWh of heat energy for only 1kWh of electrical input and giving efficiency of almost 400%.

Comparison of energy sources

	Midea air source heat pump	Gas boiler	Electric water Heater	Diesel boiler	Solar water heater
Energy source	Air and electricity	LPG	Electric	Diesel	Sun and electricity
Calorific value	860kcal/kWh	24000kcal/m ³	860kcal/kWh	10200kcal/kg	860kcal/kWh
Average efficiency	3.5	0.8	0.95	0.7	2.7
Consumption*	13.33kWh	2.08m ³	49.13kWh	5.6kg	17.22kWh
Running cost(USD)	1.2	5.9	4.42	6.5	1.5

LPG: Liquefied Petroleum Gas

1. Products tested under controlled conditions at Midea laboratories.

2. * 40,000kcal are required to heat 1 ton of water from 15°C to 55°C.

How air source heat pump works

and domestic hot water.

1 Stage One As the refrigerant passes through the expansion valve and expands, its temperature and pressure both drop.

2 Stage Two

With the temperature of the refrigerant being lower than the ambient temperature, heat passes from the air flowing over the air side heat exchanger to the refrigerant and the refrigerant evaporates.

3 Stage Three

When the refrigerant vapor passes through the compressor its pressure increases and its temperature rises above that of the

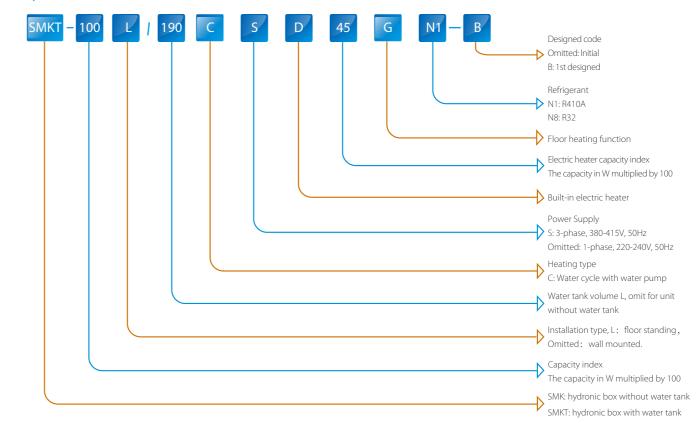
4 Stage Four

which is then pumped indoors to the space heating terminals or hot water tank. The refrigerant cools and condenses and then ready to return to the expansion valve to start the cycle again.

Heat distribution

Heat pump units are capable of extracting heat from the surrounding air and transferring this heat indoors for space heating

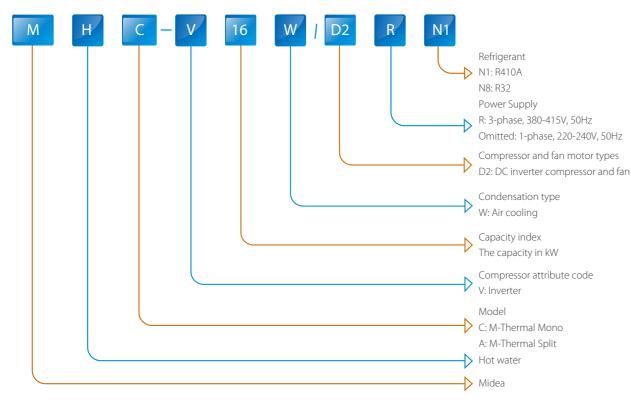
TOTAL SOLUTION FOR HEATING, COOLING AND DOMESTIC HOT WATER



Overview

The M-Thermal range offers the flexibility to either have the hydronic components installed indoors or outdoors. M-Thermal has two different refrigerant series: R32 & R410A. With M-Thermal Mono, the hydronic components are integrated into the outdoor unit, offering ease of installation, whilst with M-Thermal Split the hydronic components are contained in a separate hydronic box, offering more installation flexibility. Both the Mono and Split products are rated A+++ on the energy efficiency and make a significant contribution to limiting the impact on the environment.

Hydronic box



Product lineup

Nomenclature

Outdoor units

rmal Split	Refrigerant
	R410A
	R32

	9	10	12	14	16	
	• •	•	• •	• •	• •	
			• •	• •	• •	
	8	10	12	14	16	

e			• •	
••	• •	•	•	•
		•	•	•

er tank	Hydronic box with water tank							
	190L	250L						
	•	•						
		• R410A • R32						

M-Thermal Mono

M-Thermal Split

M-Thermal Mono System	Ver interface	Solar panel
Application	Heating + Cooling + Domestic hot water	
Structure type	Integrated (Heat pump and hydronic box are in the same casing)	
Refrigerant piping	Inside outdoor unit	
Water piping	Between outdoor unit and indoor heating appliances	
Installation	Only need to install water piping	
Combinational parts (field supplied)	Under-floor heating coils Fan coil units Low temperature radiators Domestic hot water tank Auxiliary heat sources (such as water heaters and boilers)	

Mono outdoor unit

Mono outdoor unit absorbs heat from the outside air and transfers it to the water in the hydronic modular, through water to supply heat to indoor side.

Domestic hot water tank

Hot water from the Mono unit is circulated around the domestic hot water tank's heating water coil, heating the domestic hot water inside the tank. Immersion heaters are often installed in domestic hot water tanks as a backup.

User interface

User interface is connected to the Mono unit through signal wire; it mainly uses for ON/OFF the unit, mode setting, temperature adjusting and timer setting.

M-Thermal Split System	User interface (external, apply to \$MK)
Application	Heating + Cooling + Domestic hot water
Structure type	Split (Heat pump and hydronic box are inde
Refrigerant piping	Between heat pump unit (outdoor) and hyd
Water piping	Between hydronic box and indoor heating
Installation	Refrigerant piping and water piping
Combinational parts (field supplied)	Under-floor heating loops Fan coil units Low temperature radiators Domestic hot water tank(external, apply to Auxiliary heat sources (such as water heater

Split type outdoor unit

The outdoor unit absorbs heat from the outside air and transfers it inside through the refrigerant piping.

Hydronic box

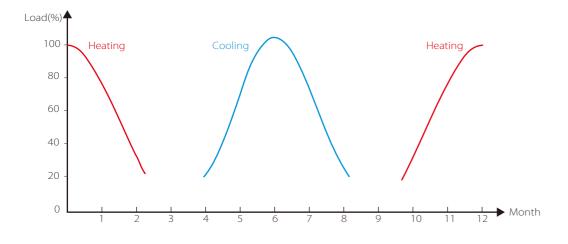
The hydronic box heats the water by refrigerant from outdoor unit. The heated water circulates through heating apparatus such as floor heating, radiators, fan coil units as well as inner coil of domestic hot water tank.

Domestic hot water tank

Hot water from the Split unit is circulated around the domestic hot water tank's heating water coil, heating the domestic hot water inside the tank. Immersion heaters are often installed in domestic hot water tanks as a backup.

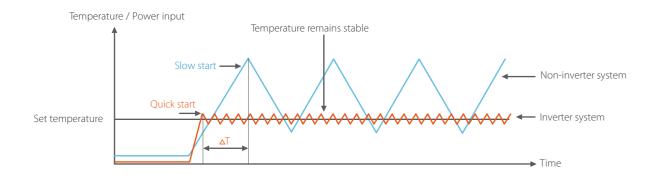
User interface

User interface is connected to the Split unit through signal wire. It mainly uses for ON/OFF the unit, mode setting, temperature adjusting and timer setting.


o SMK) ers and boilers) M-Thermal

Features

DC Inverter Technology


Guarantee efficiency

The motors traditionally used in heat pumps run at full power even during part-load operation, wasting energy. Midea's M-Thermal products use DC inverter technology, which allows precise control of motor speed, ensuring that only the power necessary to perfectly match the real load is used.

Stable water temperature improves comfort

Precise control of the compressor rotation speed ensures that the water temperature is maintained within a much smaller range around the set temperature than is possible with non-inverter systems.

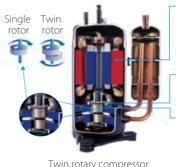
Quick start-up

Inverter system output power according to the energy demand by adjusting motor rotary frequency, so it possible to achieve comfort conditions in less time than system without inverter, start-up time reduced.

Less frequent start/stop

The ability to vary compressor speed (as opposed to simple on/off control) means that the compressors experience fewer start/stop cycles which expands compressor lifespan and reduces noise.

Quiet operation


Most of the time, the capacity required for heating/cooling is lower than the peak load condition, meaning that heat pumps work under part-load conditions most of the time. With DC inverter compressors adjusting rotation speed according to the actual load requirement, noise levels are lower than with traditional compressor technology.

High efficiency and wide operating range

- Spray liquid cooling control of compressor is benefit for enhancing heating capacity in low temperature condition.
- ✤ R410A series: Offers heating capacity of 80% at -7°C thanks to the large heat exchanger and large compressor.
- ♣ R32 series: Offers heating capacity of 100% at -7°C thanks to the large heat exchanger and large compressor.

Twin rotary compressor

Twin rotary DC inverter compressor uses 30% less power than traditional scroll compressors whilst also giving a wider operating frequency range, enabling precise control and reducing running noise levels.

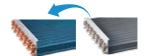


High efficiency DC motor: Innovative motor core design - High density neodymium magnet - Concentrated stator Wide operating frequency range Better balance and extremely low vibration: - Twin eccentric cams - 2 balance weights Highly stable moving parts: Optimize compressor drive technology - Highly robust bearings - Compact structure

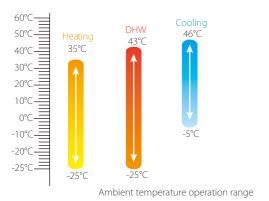
Twin rotary compressor

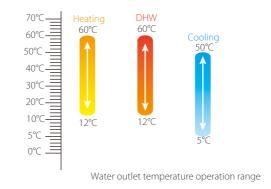
Finned tube heat exchanger

High performance fin-coil type heat exchanger is adopted at air side. The new designed window fins enlarge the heat-exchanging area, decrease the air resistance, save more power and enhance heat exchange performance. Hydrophilic film fins and inner-threaded copper pipes optimize heat exchange efficiency. The specially coated blue fins enhance durability and protect against corrosion from air, water and other corrosive agents, assuresa longer coil service life.


Hvdronic module Intergrated hydronic module with DC water pump and backup electric heater.

- For R32 series and R410A model MHC-V5(7/9)W/D2N1, backup electric heater is customizable whilst other R410A models are standard mounted for additional heating during extremely cold weather. The capacity of the backup electric heater is customizable and the output capacity is adjustable.
- Heating, cooling and domestic hot water: a total heat solution.
- Compatible with additional heat sources (AHSs) including solar water heaters and boilers. AHSs can work together with heat pump or alternative for space heating and domestic hot water dependent on the system control.


Hydrophilic fins + inner-threaded pipes

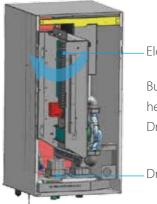

Brushless DC fan motor

Stepless fan motor control enables super-quiet fan operation and minimizes power consumption

Wide ambient temperature and water outlet temperature operation ranges.

Easy installation and easy maintenance

- All hydronic components are located within the outdoor unit(Mono models).
- * Refrigerant system entirely contained within outdoor unit no additional refrigerant piping required (Mono models).
- Compact structure, easy for transportation and installation.
- Two-door design for easy access to internal components for easy maintenance(Mono 12-16KW models).



Door 1: Access to hydronic components and electrical parts

Door 2: Access to refrigerant components and electrical parts.

- ♣ R32 split series: Additional refrigerant charge only required if refrigerant piping length exceeds 15m
- * R410A split series: Additional refrigerant charge only required if refrigerant piping length exceeds 10m.
- * Rotating electric control box enables easy maintenance access to all hydronic components (For SMK).

Electric box

Built-in backup electric heater (optional for R32 series) uses for additional heating during extremely cold weather. The output capacity is adjustable. Drain pan fitted as standard.

Drain pan

Various customized components (For SMKT)

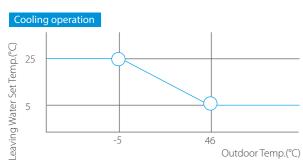
- ↔ Back-up heater of 2(4,6,9)KW can be customized for models SMKT-100L/190(250)CGN8
- * Various customized components to meet different applications need .and make installation more convenient.

Solar energy kit

The solar energy kit is used to circulate hot water heated by solar energy to water tank. By connecting the signal of solar system and circulation pump of the kit to M-Thermal, free energy will be well used and operation cost is lower.

External 2 zone kit

Inertial 40-litre storage tank less frequent especially in part load condition.

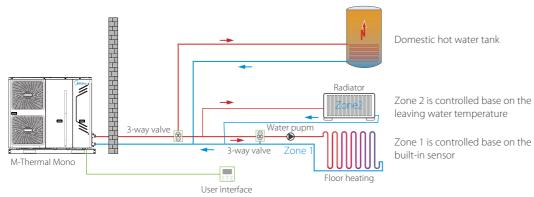

✤ Two screws to open the front door and rotating control box enable easy maintenance (For SMK).

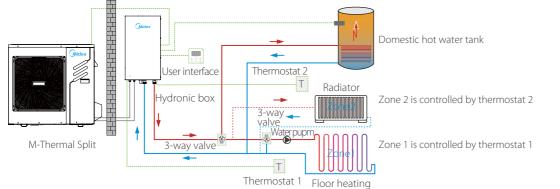
The 2 zone kit is used to realize the 2 zones control function of M-Thermal. In situation of M-Thermal is connected to different type of space heating terminals or terminals in different rooms, the using of the kit will enhance comfort.

With the storage tank, the water temperature will be more stable and unit ON/OFF will be

Flexible operation and more comfort

• Weather dependent operation with climate correlation to ensure absolute comfort. Totally there are 32 climate correlation curves for choice and custom curve is optional. Once the curve is selected, the unit set the outlet water temperature automatically according to the outdoor ambient temperature.




Two zones control more flexibility

Temperature of each zone is separately controlled. Two zones control reduces water pump cycle time and save energy.

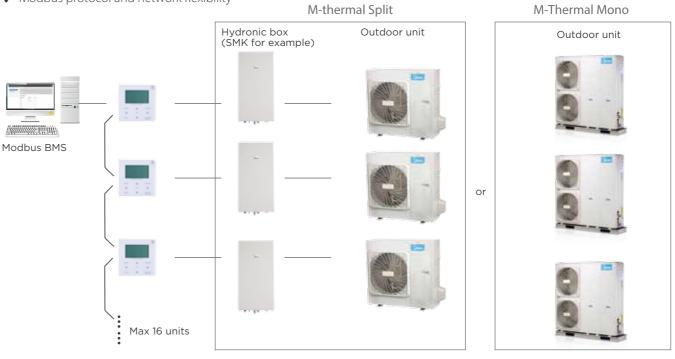
Two zones controlled using user interface only (take an example as Mono Series)

Two zones controlled using user interface and thermostat (take an example as Split Series)

Priority setting function and multi modes choice

Priority Operation Priority Operation Priority

Note:


1. Only when the immersion heater of tank is available can the disinfection mode be used.

Special functions such as air purge, preheating for floor and floor drying up

User interface

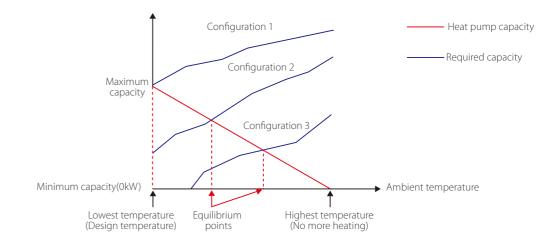
- Newly designed touch-key wired controller
- ✤ Check running parameters in real time
- ✤ Communication wire length up to 50m
- ↔ Built-in temperature sensor
- ↔ Built-in wifi module (For R32 series)
- Multiple languages (For R32 series)
- Modbus protocol and network flexibility

Smart Grid function(R32 models only)

Unit adjusts the operation according to different electrical signals to decrease operation cost. Free electric energy signal:DHW mode turn on, the setting temperature will be changed to 70 C automatically, and the TBH operate. The unit operate in cooling/heating mode as the normal logic. Common electric energy signal: unit operates according to users' need.

Expensive electric energy signal: only available for cooling or heating mode and user can set the maximum operating time.

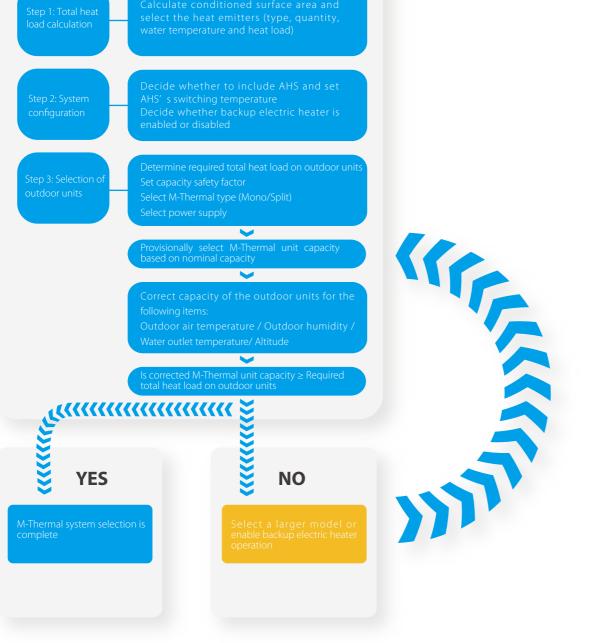
Remote control


Check the running state of equipment, zone switch, operation mode and temperature. Set switch, operation mode and temperature of each zone Display fault information

Typical Applications

System configurations

M-Thermal system can be configured to run with the electric heater either enabled or disabled and can also be used in conjunction with an auxiliary heat source such as a boiler. The chosen configuration affects the size of heat pump that is required. Three typical configurations are described below.


- The heat pump covers the required capacity and no extra heating capacity is necessary.
- Requires selection of larger capacity heat pump and implies higher initial investment.
- Ideal for new construction in projects where energy efficiency is paramount.

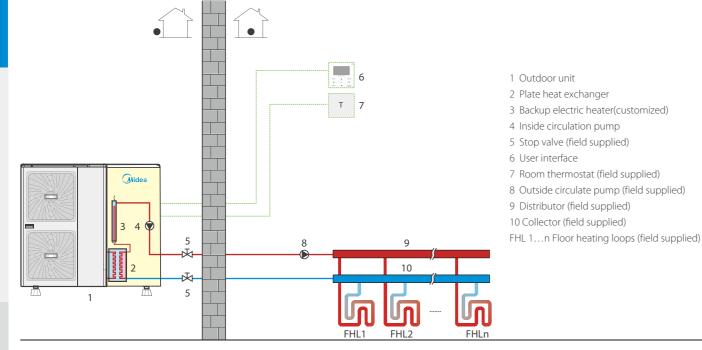
- + Heat pump covers the required capacity until the ambient temperature drops below the point at which the heat pump is able to provide sufficient capacity. When the ambient temperature is below this equilibrium point, the backup electric heater supplies the required additional heating capacity.
- Best balance between initial investment and running costs, results in lowest lifecycle cost.
- Ideal for new construction.

- + Heat pump covers the required capacity until the ambient temperature drops below the point at which the heat pump is able to provide sufficient capacity. When the ambient temperature is below this equilibrium point, depending on the system settings, either the auxiliary heat source supplies the required additional heating capacity or the heat pump does not run and the auxiliary heat source covers the required capacity.
- Enables selection of lower capacity heat pump.
- Ideal for refurbishments and upgrades.

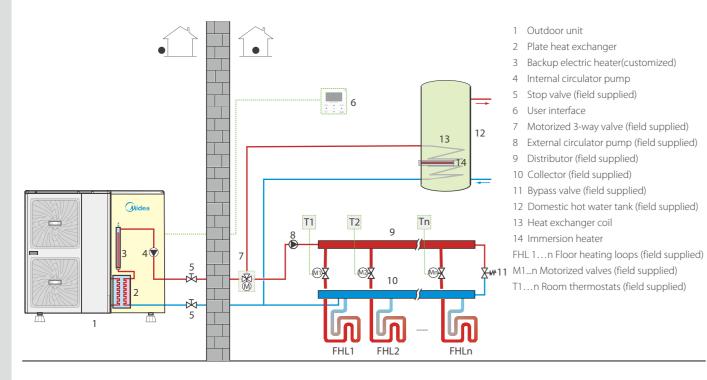
Total heat solution - Heating, cooling and domestic hot water in one system

M-Thermal is an integrated system that provides space heating and cooling as well as domestic hot water, offering a complete, all-year-round solution which can remove the need for traditional gas or oil boilers, or work together with them.

Leaving Water Temperature (LWT)

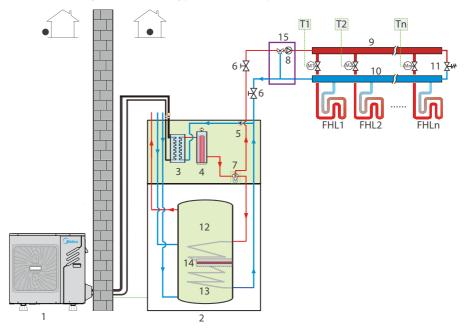

The recommended design LTW ranges for different types of heat emitter are: ◆ For floor heating: 30°C to 35°C ◆ For fan coil units: 30°C to 45°C ◆ For low temperature radiators: 40°C to 50°C

Typical Applications(take an example as R32 Mono Series)

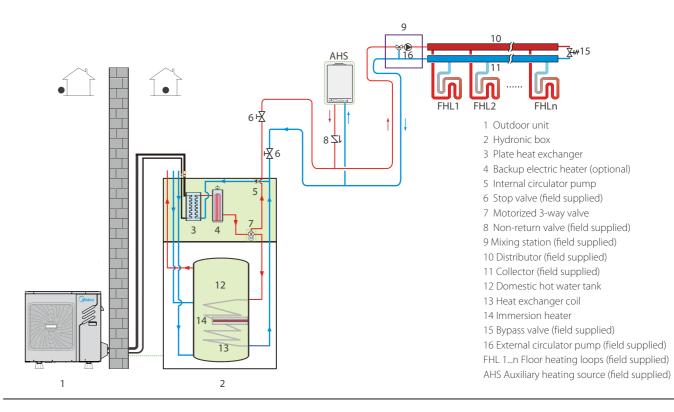

Application 1: Space Heating Only

The room thermostat is used as a switch. When there is a heating request from the room thermostat, the Mono unit operates to achieve the target water temperature set on the user interface. When the room temperature reaches the thermostat's set temperature, the unit stops.

Application 2: Space Heating and Domestic Hot Water


The room thermostats are not connected to the Mono unit but to a motorized valve. Each room' s temperature is regulated by the motorized valve on its water circuit. Domestic hot water is supplied from the domestic hot water tank connected to the Mono unit. A bypass valve is required.

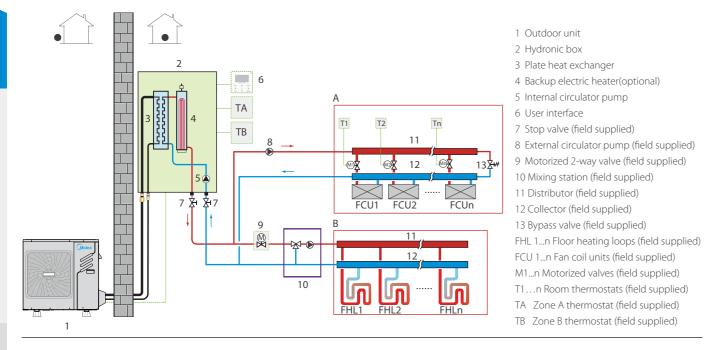
Typical Applications(take an example as R32 Split combine with SMKT)


Application 1: Space Heating and Domestic Hot Water

The room thermostats are not connected to the hydronic box but to a motorized valve. Each room's temperature is regulated by the motorized valve on its water circuit. Domestic hot water is supplied from the domestic hot water tank connected to the hydronic box. A bypass valve is required.

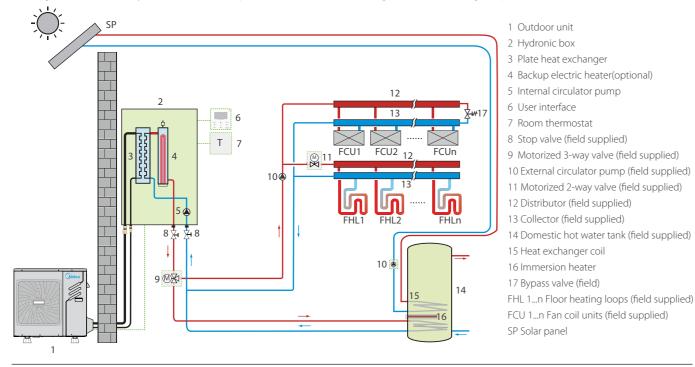
Application 2: Space Heating and Domestic Hot Water (Bivalent)

Auxiliary heat source provides space heating only



- 1 Outdoor unit
- 2 Hydronic box
- 3 Plate heat exchanger
- 4 Backup electric heater (optional)
- 5 Internal circulator pump
- 6 Stop valve (field supplied)
- 7 Motorized 3-way valve
- 8 External circulator pump (field supplied)
- 9 Distributor (field supplied)
- 10 Collector (field supplied)
- 11 Bypass valve (field supplied)
- 12 Domestic hot water tank
- 13 Heat exchanger coil
- 14 Immersion heater
- 15 Mixing station (field supplied)
- FHL1...n Floor heating loops (field supplied)
- M1...n Motorized valves (field supplied)
- T1...n Room thermostats (field supplied)

Typical Applications(take an example as R32 Split combine with SMK)


Application 1: Space Heating Through Floor Heating Loops and Fan Coil Units

The floor heating loops and fan coil units require different operating water temperatures. To achieve these two set points, a mixing station is required. Room thermostats for each zone are optional.

Application 2: Space Heating, Space Cooling and Domestic Hot Water Compatible with Solar Water Heater

Floor heating loops and fan coil units are used for space heating and fan coil units are used for space cooling. Domestic hot water is supplied from the domestic hot water tank connected to both the hydronic box and solar water heater. The unit switches to heating or cooling mode according to the temperature detected by the room thermostat. In space cooling mode, the 2-way valve is closed to prevent cold water entering the floor heating loops.

Specifications

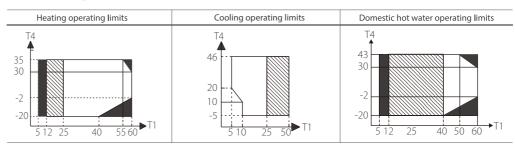
R410A M-Thermal Mono

Model name MHC-			V5W/D2N1	V7W/D2N1	V9W/D2N1	V10W/D2N1	V12W/D2N1	V14W/D2N1	V16W/D2N1	V12W/D2RN1	V14W/D2RN1	V16W/D2RN1	
Power supply		V/Ph/Hz		•		220-240/1/50					380-415/3/50		
	Capacity	kW	4.58	6.55	8.64	10.43	12.17	14.76	16.33	12.37	14.10	16.30	
Heating ²	Rated input	kW	0.97	1.45	2.01	2.28	2.73	3.40	3.90	2.76	3.26	3.88	
	COP	COP		4.52	4.30	4.57	4.46	4.34	4.19	4.48	4.33	4.20	
	Capacity	kW	4.67	6.69	9.19	10.17	12.58	14.08	16.12	12.02	14.11	16.06	
Heating ³	Rated input	kW	1.43	2.05	2.63	3.08	3.86	4.47	5.22	3.72	4.46	5.23	
	COP		3.27	3.26	3.49	3.30	3.26	3.15	3.09	3.23	3.16	3.07	
	Capacity	kW	4.55	6.45	8.35	10.25	12.19	14.61	14.82	12.64	14.03	15.10	
Cooling ⁴	Rated input	kW	1.00	1.47	2.10	2.06	2.65	3.32	3.66	2.75	3.26	3.78	
	EER		4.55	4.40	3.97	4.98	4.60	4.40	4.05	4.60	4.30	4.00	
	Capacity	kW	4.55	6.71	8.06	10.44	12.21	12.95	13.72	12.58	13.80	15.26	
Cooling ⁵	Rated input	kW	1.55	2.57	3.51	3.28	4.17	4.53	5.16	4.32	5.14	6.41	
	EER		2.94	2.61	2.30	3.18	2.93	2.86	2.66	2.91	2.68	2.38	
Seasonal space heating	LWT at 35℃		A++										
energy efficiency class ⁶	LWT at 55℃			A++									
Air flow		m³/h	3050	3050	3050	6150	6150	6150	6150	6150	6150	6150	
Sound power level		dB	63	67	70	68	69	73	73	70	73	75	
Net dimensions (WxHxD)		mm	1210×945×402				1404×14	414×405			1404×1414×40	5	
Packed dimensions (WxHxl	D)	mm	1500×1140×450				1475×1580×440				1475×1580×440)	
Net/Gross weight		kg	99/117			162/183				177/198			
Water piping connections		mm	Ф25 Female BSP			Ф32 Female BSP			Ф32 Female BSP				
Safety valve set pressure		MPa		0.3		0.3				0.3			
Total water volume		L		2.0			5.5			5.5			
	Cooling	°C	-5 to 46										
Operating temperature range	Heating	°C					-20 to 35						
lange	DHW	°C					-20 t	:0 43					
	Cooling	°C					5 to	25					
LWT range	Heating	°C					25 t	o 60					
	DHW	°C					40 t	o 60					
Definement	Туре						R41	0A					
Refrigerant	Charged volume	kg	2.4	2.4	2.4	3.6	3.6	3.6	3.6	3.6	3.6	3.6	
Throttle type				Electronic ex	pansion valve		Electr	onic expansion	valve	Electronic expansion valve			
	Standard mounted	kW	-	-	-	3.0	3.0	3.0	3.0	4.5	4.5	4.5	
Backup electric heater	Optional	kW	3.0	3.0	3.0	4.5	4.5	4.5	4.5	-	-	-	
	Capacity steps		1	1	1	2	2	2	2	1	1	1	

Notes:

1. Relevant EU standards and legislation: EN14511; EN14825; EN50564; EN12102; (EU) No 811/2013; (EU) No 813/2013; OJ 2014/C 207/02:2014.

2. Outdoor air temperature 7°C DB, 85% R.H.; EWT 30°C, LWT 35°C.


3. Outdoor air temperature 7°C DB, 85% R.H.; EWT 40°C, LWT 45°C

4. Outdoor air temperature 35°C DB; EWT 23°C, LWT 18°C.

5. Outdoor air temperature 35°C DB; EWT 12°C, LWT 7°C.

6. Seasonal space heating energy efficiency class tested in average climate conditions.

Operating Limits

Abbreviations:

DHW: Domestic hot water LWT: Leaving water temperature

Abbreviations:

T4: Outdoor temperature(°C) T1: Leaving water temperature (°C)

haded areas indicate no heat pump peration (backup electric heater or auxiliary heat source only)

Water flow temperature drop or rise interval

R410A M-Thermal Split

Outdoor Split type MHA-			V4W/D2N1	V6W/D2N1	V8W/D2N1	V10W/D2N1	V12W/D2N1	V14W/D2N1	V16W/D2N1	V12W/D2RN1	V14W/D2RN1	V16W/D2R	
Powersupply			V/Ph/Hz		-		220-240	0/1/50				380-415/3/50	
	Capacity		kW	4.10	6.10	8.00	10.00	12.10	14.00	15.50	12.00	14.00	15.50
Heating ²	Rated input		kW	0.82	1.29	1.73	2.17	2.74	3.39	3.82	2.66	3.26	3.79
	COP			5.00	4.73	4.62	4.61	4.42	4.13	4.06	4.51	4.29	4.09
	Capacity		kW	4.01	5.96	7.34	10.12	11.85	14.05	16.05	11.97	13.93	15.48
Heating ³	Rated input	Rated input		1.13	1.68	2.13	2.93	3.48	4.41	5.03	3.50	4.21	4.87
COP				3.55	3.55	3.45	3.45	3.41	3.19	3.19	3.42	3.31	3.18
	Capacity		kW	4.10	6.20	8.00	10.50	11.70	13.10	13.80	12.00	13.50	14.50
Cooling ⁴	Rated input		kW	0.84	1.43	1.93	2.30	2.79	3.48	3.77	2.80	3.45	3.94
	EER			4.88	4.34	4.15	4.57	4.19	3.76	3.66	4.29	3.91	3.68
	Capacity		kW	4.12	6.15	6.44	9.39	11.02	12.49	12.85	11.70	12.53	12.91
Cooling⁵	Rated input		kW	1.30	2.08	2.24	3.26	4.17	5.07	5.39	4.65	5.21	5.52
	EER			3.17	2.96	2.88	2.88	2.64	2.46	2.38	2.52	2.40	2.34
Seasonal space	LWT at 35°C			A+	++	A++	A+-	++	A+	+	A+	++	A++
heatingenergy efficiency class ⁶	LWT at 55°C							A	-+				
Sound power level			dB	62	66	69	67	69	71	72	70	72	72
Dimension (W×H×C)		mm	960×86	0×380	1075×965×395		900×132	7×400		9	00×1327×400	
Packing (W×H×D)			mm	1040×10	00×430	1120×1100×435		1030×14	57×435		10)30×1457×435	
Net/gross weight			kg	60,	60/72 76/88 99/112 115/126								
Compressor	Туре			Twin-rotary inverter									
0.11.0	Туре			Brushless DC motor									
Outdoor fan	Air flow		m³/h	3180 5116 6500									
Air side heat exchan	ger			Fin-coil									
		Туре		Flaring									
	Liquid	Dia.(OD)	mm				Ф9.5						
	-	Туре						Flar	ing				
D	Gas	Dia.(OD)	mm					Φ1	5.9				
Piping connections	Disission	Min.	m		2	2		:	2			2	
	Piping length	Max.	m	2	20	30		5	0			50	
	Installtion	OU above	m	1	0	20		3	0			30	
	height dfference	OU below	m		8	15		2	5			25	
D. ()	Туре							R41	0A				
Refrigerant	Charged volu	ime	kg	2	.5	2.8		3	.9			4.2	
Throttle type				Electric expansion valve									
Operating	Cooling		°C					-5 to	46				
temperature	Heating		°C					-20 t	035				
range	DHW		°C		-20 to 43								

R410A Hydron	ic box
	Model

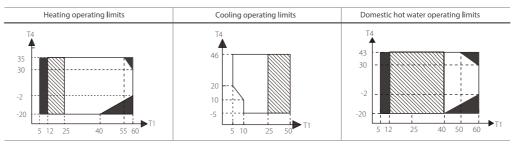
Hydronic box	Model			SMK-80/CD30GN1-B	SMK-160/CD30GN1-B	SMK-160/CSD45GN1-B				
	Compatible outdoor unit m	odel names		MHA-V4(6, 8)W/D2N1	MHA-V10/12/14/16W/D2N1	MHA-V12/14/16W/D2RN1				
Function				Heating and cooling						
		Low	°C	25 to 55						
	Space heating	High	°C	35 to 60						
LWT range		Low	°C		5 to 25					
	Space cooling	High	°C		18 to 25					
DHW					40 to 60					
Power supply			V/Ph/Hz	220-240/1/50	220-240/1/50	380-415/3/50				
Sound power level			dB	43	45	45				
Dimension (WxHxD)			mm	400x865x427						
Packing (WxHxD)			mm	495x1040x495						
Net/gross weight			kg	51/57	54/60	53/59				
	Piping connections				DN25					
	Safety valve set pressure		MPa	0.3						
	Total water volume		L	5.0 5.5						
	Drainage pipe		mm	Φ16						
		Volume	L		5					
Water circuit	Expansion tank	Max. water pressure	MPa		0.8					
		Pre pressure	MPa		0.15					
	Water side heat exchanger	Туре			Plate					
	Mater side neat exchangel	Volume	L	0.7	1	1				
	Water pump head		m	б	7.5	7.5				
Refrigerant circuit	Refrigerant circuit Gas side				Φ9.5					
				Φ15.9						
	Size		kW	3.0	3.0	4.5				
Backup electric heater	Step			2	2	2				
	Power supply			220-240/1/50	220-240/1/50	380-415/3/50				

Notes:

1. Relevant EU standards and legislation: EN14511; EN14825; EN50564; EN12102; (EU) No 811/2013; (EU) No 813/2013; OJ 2014/C 207/02:2014.

2. Outdoor air temperature 7°C DB, 85% R.H.; EWT 30°C, LWT 35°C.

3. Outdoor air temperature 7°C DB, 85% R.H.; EWT 40°C, LWT 45°C.


4. Outdoor air temperature 35°C DB; EWT 23°C, LWT 18°C.

5. Outdoor air temperature 35°C DB; EWT 12°C, LWT 7°C.

6. Seasonal space heating energy efficiency class tested in average climate conditions.

Abbreviations: DHW: Domestic hot water

Operating Limits

M-Thermal

Abbreviations:

DHW: Domestic hot water LWT: Leaving water temperature

Abbreviations:

T4: Outdoor temperature(°C) T1: Leaving water temperature (°C)

Notes:

Shaded areas indicate no heat pump operation (backup electric heater or auxiliary heat source only)

Water flow temperature drop or rise interval

M-Thermal

R32 M-Thermal Mono

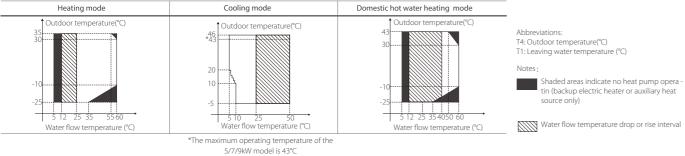
Model name MHC-			V5W/D2N8	V7W/D2N8	V9W/D2N8	V12W/D2N8	V14W/D2N8	V16W/D2N8	V12W/D2RN8	V14W/D2RN8	V16W/D2RN8	
Power supply		V/Ph/Hz		220-240/1/50			220-240/1/50			380-415/3/50		
	Capacity	kW	4.65	6.65	8.60	12.30	14.10	16.30	12.30	14.10	16.30	
Heating ¹	Rated input	kW	0.93	1.35	1.87	2.56	3.07	3.66	2.54	3.05	3.63	
	COP		5.00	4.94	4.60	4.81	4.60	4.45	4.84	4.63	4.49	
	Capacity	kW	4.80	6.70	8.60	12.40	14.10	16.20	12.40	14.10	16.20	
Heating ²	Rated input	kW	1.33	1.88	2.50	3.52	4.06	4.72	3.45	3.99	4.70	
	COP		3.60	3.57	3.44	3.53	3.47	3.43	3.59	3.54	3.45	
	Capacity	kW	4.65	6.80	8.60	11.90	14.20	16.10	11.90	14.20	16.10	
Heating ³	Rated input	kW	1.77	2.42	3.13	4.28	5.17	5.91	4.24	5.10	5.83	
	COP		2.63	2.81	2.75	2.78	2.75	2.73	2.81	2.79	2.76	
	Capacity	kW	4.60	6.45	8.00	12.20	14.00	15.50	12.20	14.00	15.50	
Cooling ⁴	Rated input	kW	0.95	1.39	1.92	2.55	3.10	3.64	2.53	3.11	3.63	
	EER		4.82	4.65	4.16	4.78	4.52	4.26	4.83	4.50	4.27	
	Capacity	kW	4.85	6.30	7.95	10.90	12.90	13.80	10.90	12.90	13.80	
Cooling⁵	Rated input	kW	1.63	2.27	3.15	3.74	4.62	5.21	3.72	4.62	5.19	
	EER		2.98	2.77	2.53	2.92	2.80	2.65	2.93	2.80	2.66	
Seasonal space heating energy	LWT at 35°C	class	A+++	A+++	A+++	A++	A++	A++	A++	A++	A++	
efficiency class ⁶	LWT at 55℃	class	A++	A++	A++	A++	A++	A++	A++	A++	A++	
Air flow		m³/h	3050	3050	3050	6150	6150	6150	6150	6150	6150	
Sound power level		dB	61	64	67	68	71	71	68	71	71	
Net dimensions (W×H>	(D)	mm	1210×945×402				1404×1414×405			1404×1414×405		
Packed dimension (W×	H×D)	mm	1285x1090x435				1430x1475x450			1430x1475x450		
Net/Gross weight		kg		92/111			158/178			172/193		
Water piping connection	ons Dia.	inch		1" Male BSP		1-1/4" Male BSP			1-1/4" Male BSP			
Safety valve set pressur	e	MPa	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Expansion tank volume		L	2	2	2	5	5	5	5	5	5	
Total water volume		L	2	2	2	3.2	3.2	3.2	3.2	3.2	3.2	
	Cooling	°C		-5-43			-5-46			-5-46		
Ambient temperature	Heating	°C		-25-35			-25-35			-25-35		
range	DHW	°C		-25-43			-25-43			-25-43		
	Cooling	°C		5-25			5-25			5-25		
LWT range					25-60			25-60				
DHW		°C		40-60			40-60			40-60		
Defriment	Type R32					R32			R32			
Refrigerant Charged volume kg				2.0			2.8			2.8		
Throttle type			Electror	ic expansion val	ve	Electronic expansion valve			Electronic expansion valve			
	Standard mounted	kW	/	/	/	/	/	/	/	/	/	
Backup electric heater	Optional	kW	3	3	3	3	3	3	4.5	4.5	4.5	
	Capacity steps		1	1	1	1	1	1	1	1	1	

Notes:

1. Evaporator air in 7°C, 85% R.H., Condenser water in/out 30/35°C

2. Evaporator air in 7°C, 85% R.H., Condenser water in/out 40/45°C

3. Evaporator air in 7°C, 85% R.H., Condenser water in/out 47/55°C


4. Condenser air in 35°C. Evaporator water in/out 23/18°C

5. Condenser air in 35°C. Evaporator water in/out 12/7°C

6. Seasonal space heating energy efficiency class testes in average climate general conditions.

7. Relevant EU standards and legislation: EN14511; EN14825; EN50564; EN12102; (EU) No 811/2013; (EU) No 813/2013; OJ 2014/C 207/02:2014.

Operating Limits

R32 M-Thermal Split

Model name MHA-				I/D2N8	V6W/D2N8		V8W/D2N8		V10W/D2N8		
Indoor unit			Without water tank	With water tank	Without water tank	With water tank	Without water tank	With water tank	Without water tank With water tank		
Power supply		V/Ph/Hz				220-24	0/1/50				
	Capacity	kW	4.2	4.49	6.5	6.32	8.4	8.37	10	10.26	
Heating ¹	Rated input	kW	0.82	0.9	1.34	1.32	1.73	1.72	2.15	2.19	
	COP		5.15	5.01	4.85	4.79	4.85	4.87	4.65	4.68	
	Capacity	W	4.2	4.14	6.35	6.09	8.05	8.02	9.85	10.3	
Heating ²	Rated input	W	1.15	1.12	1.74	1.66	2.16	2.1	2.72	2.81	
	COP		3.65	3.7	3.64	3.66	3.73	3.82	3.62	3.67	
	Capacity	W	4.1	4.09	5.75	5.46	7.5	7.6	9.3	8.99	
Heating ³	Rated input	W	1.44	1.44	1.98	1.82	2.49	2.44	3.25	2.98	
	COP		2.85	2.84	2.9	3	3.01	3.12	2.86	3.02	
	Capacity	W	4.3	4.63	6.45	6.79	8.35	8.53	10.2	9.73	
Cooling ⁴	Rated input	W	0.77	0.89	1.32	1.32	1.79	1.71	2.4	2	
	EER		5.6	5.21	4.88	5.14	4.67	5	4.25	4.87	
	Capacity	W	4.5	4.56	6.5	6.17	7.38	7.39	8.15	9.06	
Cooling⁵	Rated input	W	1.36	1.31	2.2	1.92	2.44	2.37	2.76	3.01	
	EER		3.32	3.48	2.95	3.21	3.02	3.12	2.95	3.01	
Seasonal space heating energy	Water outlet at 35°C	class	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	
efficiency class ⁶	Water outlet at 55°C	class	A++	A++	A++	A++	A++	A++	A++	A++	
Water tank profile &	190L	L	/	A+	/	A+	/	A+	/	A+	
DHW energy class	250L	XL	/	A	/	A	/	A	/	A	
Sound power level		dB	6	51	6	2	6	3	6	5	
Net dimension (W×H)	×D)	mm		960×8	60×380		1075×965×395				
Packed dimension (W	×H×D)	mm		1040×10	000×430		1120×1100×435				
Net/Gross weight		kg		57,	/68		67/79				
Compressor	Туре			Twin rot	ary invert		Twin rotary invert				
Outdoor fan	Motor type			DC Brus	hless fan		DC Brushless fan				
	Air f1ow	m³/h		32	250		4950				
Air side heat exchanger	Туре					Fin	-coil				
	Liquid	mm		6.	35		9.52				
Pipe size O.D.	Gas	mm		15	5.9			1.	5.9		
	Connection meth	od				Fla	red				
Between indoor and	Height difference	m		Ma	x.20			Ma	ix.20		
outdoor unit	Pipe length	m		2-	30			2-	-30		
Defrigerent	Type(GWP)					R32	(675)				
Refrigerant	Charged volume	kg		1.	55			1.	.65		
Additional	Chargment	g/m		2	20			3	38		
Additional refrigerant	Min. pipe length	m	15								
Throttle type			Electronic expansion valve								
	Cooling	°C				-5-	-43				
Outdoor air temperature range	Heating	°C				-25	~35				
temperature range	DHW	°C				-25	~43				

Notes:

1.Evaporator air in 7°C, 85% R.H., Condenser water in/out 30/35°C

2.Evaporator air in 7°C, 85% R.H., Condenser water in/out 40/45°C

3.Evaporator air in 7°C, 85% R.H., Condenser water in/out 47/55°C

4.Condenser air in 35°C. Evaporator water in/out23/18°C

5.Condenser air in 35°C. Evaporator water in/out 12/7°C

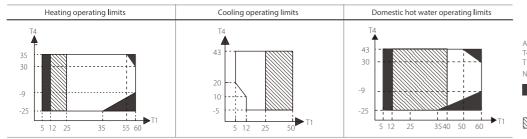
Abbreviations:

DHW:Domestic hot water

LWT:Leaving water temperature

6. Seasonal space heating energy efficiency class testes in average climate general

7. Relevant EU standards and legislation: EN14511; EN14825; EN50564; EN12102; (EU) No 811/2013; (EU) No 813/2013; OJ 2014/C 207/02:2014.


Abbreviations: DHW: Domestic hot water GWP: Global warming potential M-Thermal

	Model			SMK-60/CGN8	SMK-80/CGN8	SMKT-100L/190CGN8	SMKT-100L/250CGN		
Hydronic box	Compatible	outdoor unit model ı	names MHA-	V4(6)W/D2N8	V8(10)W/D2N8	V4(6,8,10)W/D2N8	V4(6,8,10)W/D2N8		
	Space	Low	°C	25 t	o 55	25	to 55		
	heating	High	°C	35 t	o 60	35 to 60			
LWT range	Space	Low	°C	5 to	25	5 to 25			
	cooling	High	°C	18 t	o 25	18	to 25		
DHW			°C	40 t	o 60	40	to 60		
Power supply			V/Ph/Hz		220-24	40/1/50			
Sound power lev	el		dB	4	3	4	41		
Net dimension (V	V×H×D)		mm	400×8	50×427	600x615x1774	600x615x2084		
Packed dimension (W×H×D)			mm	495×10	40×495	660x690x1890	660x690x2190		
Net/Gross weight kg				400×8	50×427	175/185	180/190		
Water side heat exchanger				Plate type					
Water tank size			L		/	190 250			
	Coil material				/	Ename	led steel		
Water tank heat exchanger	Coil diameter		mm	,	/	2	25		
exchanger	Coil area		m ²		/		2		
Water pump	Max. pump h	nead	m	8	5	7.5	10.5		
Expansion vessel	Volume		L	1	5		8		
(Primary circuit)	Charge pressure		MPa	0.	15	0.15			
	Outlet conne	ect to terminals	inch			II II			
	Inlet connect	t to terminals	inch			п			
	DHW outlet		inch	,	/	3,	/4"		
Connection	Water inlet		inch	,	/	3,	/4"		
	DHW recircu	lation circuit inlet	inch	,	/	3,	/4"		
	Refrigerant li	quid	mm	6.35	9.52	9.52	9.52		
	Refrigerant g	as	mm	15.88	15.88	15.88	15.88		
Safety valve			MPa	0	3	().3		
Flow switch			m³/h	0	6	().6		
	Standard mc	ounted	kW		/		/		
Backup E-heater	Optional		kW		}	2,4	6,9		
	Power supply	у	V/Ph/Hz	220-24	0/1/50	220-240/1/50	380-415/3/50		
Water tank E-	Capacity mo	unted	kW		/		2		
heater	Power supply	V	V/Ph/Hz	,	/	220-240/1/50			

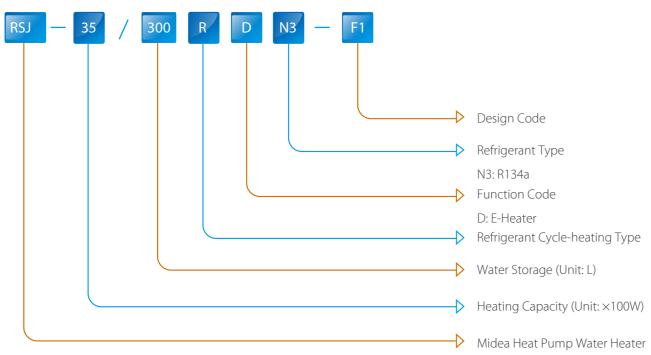
Sanitary Hot Water

Abbreviations: DHW: Domestic hot water LWT: Leaving water temperature

Operating Limits

Abbreviations: T4: Outdoor temperature(°C) T1: Leaving water temperature (°C) Notes: Shaded areas indicate no heat pu

Shaded areas indicate no heat pump operation (backup electric heater or auxiliary heat source only)

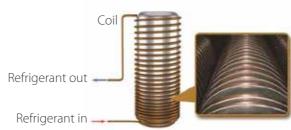

Water flow temperature drop or rise interval

Nomenclature

Features

Environmental protection

- Environmentally friendly refrigerant R134a is used.
- No discharge of poisonous gas.
- No pollution to atmosphere and environment.



High heating energy efficiency

The unit adopts heat pump principle, which absorbs heat from ambient air and releases it to the water to produce hot water. Seasonal water heating energy efficiency class ups to A.

Features

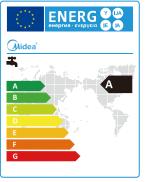
- Enamel water tank, hardly be corroded.
- Complete isolation between water and electricity without electric shock problem.
- * No fuel tubes and storage, no potential danger from oil leakage, fire, explosion, and so on.
- No cross contamination potential, the condenser coil is wrapped around the inner tank.
- Uniform water temperature provides more comfort for bottom coil and special distributary design. Sideward air flow design allows machine has better rainproof effect.
- Outside metal design prevents aging caused by strong light exposure (sideward air flow model).

Easy installation

- Integral designed and just need to connect water pipes.
- 25Pa external static pressure enables air duct up to 10m (topside air flow model).
- Flexible duct installation (topside air flow model).

Living room

Easy control


Model	RSJ-15/190RDN3-F RSJ-35/300RDN3-F1	RSJ-15/190RDN3-E	RSJ-23/300RDN3-B		
Controller appearance					
Main Functions	Protection alarm and buzzer prompt tone Button and screen auto lock Auto restart Timer function Combination button (Query, clear error code) E-heater, vocation and disinfect mode	Protection alarm and buzzer prompt tone Button and screen auto lock Auto restart Timer function Combination button (Query, clear error code) E-heater, economy and hybrid mode Disinfection	Protection alarm and buzzer prompt tone Button and screen auto lock Auto restart Timer function Combination button (Query, Disinfect, E-forced heating) E-heater, economy and hybrid mode Remote control		

Sanitary Hot Water

Dining room

For RSJ-15/190RDN3-F, RSJ-35/300RDN3-F1

 \Diamond°

DISINFECT

Combo Type 190L/300L

RSJ-15/190RDN3-F RSJ-35/300RDN3-F1

- Running ambient temperature -20~43°C
- ✤ Water output temperature 38~70°C
- Multiple key LCD display panel
- Automatic weekly disinfect function
- Top air flow, 25Pa air flow pressure enables ducted length up to 10m
- ✤ A rated energy efficiency

 \Diamond°

Specifications

Model		RSJ-15/190RDN3-F		RSJ-35/300RDN3-F1			
Power supply		V/Ph/Hz	220-240/1/50		220-240/1/50		
Running mode			Economy	E-heater	Economy	E-heater	
Running ambient temperature		°C	-7~43	-20~43	-7~43	-20~43	
Output water temperature		°C	Default 60,38~70		Default 55,38~65		
Storage size ¹		Ltr	180		28	280	
Capacity ²		kW	1.45	3.15	3.00	3.00	
COP			3.80	1.00	3.60	1.00	
Max. current		A	1	7	18	3.7	
Water heating energy efficience	zy class			A		4	
Dimension (D×H)		mm	Φ560	×1,760	Ф650×1,920		
Packing (W×H×D)		mm	695×1,805×685		740×2,160×770		
Net weight		kg	107		145.5		
Sound pressure level ³		dB(A)	42		45		
Sound power level		dB(A)	58		5	58	
Compressor	Туре		Ro	tary	Rot	tary	
Fan motor	Туре		AC Motor		AC N	lotor	
Air side heat exchanger	Туре		Fin-coil		Fin-	·coil	
Water side heat exchanger	Туре		Dividing wall type heat exchanger		Dividing wall typ	e heat exchanger	
Refrigerant	Type/Quantity	kg	R134a/1.0		R134	a/1.2	
heingelant	Throttle type		Electric exp	ansion valve	Electric exp	ansion valve	
	Water inlet pipe	mm	DI	√20	DN20		
Water pipeline	Water outlet pipe	mm	DI	N20	DN20		
water pipeline	Drainage pipe	mm	DI	N20	DN20		
	PTR valve joint	mm	DI	DN20		120	
E-heater		kW	3	.15	3.	15	
Hot water yield ⁶		m³/h	0.041	/	0.086	/	
Applicable persons			3~4		5~6		

Remark:

1. The storage size is labeled according to NF certification requirement.

2.The test conditions: outdoor temperature 15/12°C(DB/WB), initial water temperature in the units is 15°C, terminal water temperature is 45°C.

3. Sound pressure value test conditions: four side of the unit, distance is 1m, and height is 1m + half of the unit's height.

4. The above data test reference standard EN16147; (EU)No:812:2013; (EU)No:814:2013.

5. The specifications may be changed for product improvement without notice.

6. The value is calculated based on the capability value and capability test condition.

Specifications

Model		RSJ-15/190RDN3-E		RSJ-23/300RDN3-B		
Power supply		V/Ph/Hz	220-240/1/50		220-240/1/50	
Running mode			Economy	E-heater	Economy	E-heater
Running ambient temperature	2	°C	5~43	-20~43	-7~43	-20~43
Output water temperature		°C	Default 63, 38~70		Default 60,55~60	
Storage size		Ltr	170		280	
Capacity ¹		kW	1.50	2.15	2.00	3.00
COP			3.35	1.00	4.39	1.00
Max. current		A	1.	2.1	17	7.3
Dimension (D×H)		mm	Ф568	×1,580	Φ650×1,936	
Packing (W×H×D)		mm	730×1675×700		740×2235×770	
Net weight		kg	92		153.5	
Sound pressure level ²		dB(A)	48		49	
Compressor	Туре		Rotary		Rot	ary
Fan motor	Туре		AC Motor		AC N	lotor
Air side heat exchanger	de heat exchanger Type		Fin	-coil	Fin-	coil
Water side heat exchanger	Туре		Dividing wall typ	e heat exchanger	Dividing wall type	e heat exchanger
Refrigerant	Type/Quantity	kg	R134a/0.8		R134a/1.6	
heingelant	Throttle type		Electric exp	ansion valve	Electric expa	ansion valve
	Water inlet pipe	mm	DN	√20	DN20	
Water pipeline	Water outlet pipe	mm	DN	√20	DN20	
water pipeline	Drainage pipe	mm	DN	120	DN20	
PTR valve joint		mm	DM	DN20		120
E-heater I		kW	2.	15	3	3
Hot water yield ⁴		m³/h	0.043	/	0.058	/
Applicable persons			3.	~4	5~	-6

Remark:

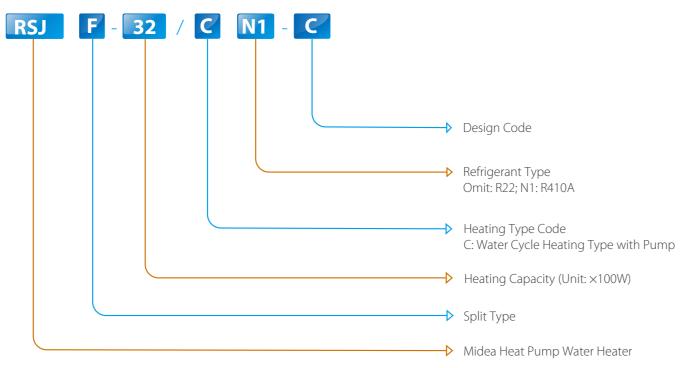
1. The test conditions: outdoor temperature 15/12°C(DB/WB), initial water temperature in the units is 15°C, terminal water temperature is 45°C.

2. Sound pressure value test conditions: four side of the unit, distance is 1m, and height is 1m + half of the unit's height.

3. The specifications may be changed for product improvement without notice.

4. The value is calculated based on the capability value and capability test condition.

Combo Type 190/300L


RSJ-15/190RDN3-E RSJ-23/300RDN3-B

- Running ambient temperature -20~43°C
- ✤ Water output temperature 38~70°C
- Multiple key LCD display panel
- Automatic weekly disinfect function
- Sideward air flow
- Metal net design (For RSJ-23/300RDN3-B)

Sanitary Hot Water

Nomenclature

Features

- R410A refrigerant
- ✤ Max. water output temperature: 60°C
- Automatic startup and shutdown
- Four-way valve for automatic defrosting
- Sealed refrigerant circuit, easy for plumber installation
- Built-in water pump.
- Single-wall tube in tube heat exchanger

Wired Controller

- Touch key operation
- Parameter setting an LCD display
- Multiple timers
- Real-time clock function
- Power-off memory function

Specifications

Model			RSJF-32/CN1-C	RSJF-50/CN1-C	RSJF-72/CN1-C			
Power supply		V/Ph/Hz	220-240/1/50					
Running ambient temperat	ure	°C	-7~43	-7~43	-7~43			
Output water temperature °C		°C		Default 50°C, 40°C~60°C				
	Capacity	kW	3.00	4.30	6.50			
Water heating	Input	kW	0.87	1.22	1.72			
water neating	COP		3.45	3.53	3.78			
	Max. current	A	6.8	8.5	12.4			
Dimension (W×H×D)		mm	790×765×275	790×765×275	845×945×335			
Packing (W×H×D)		mm	905×807×355	905×807×355	965×1,009×395			
Net/gross weight		kg	48/52	55/58	68.5/74			
Outdoor noise level		dB(A)	53	55	55			
Air flow		m³/h	2,000	2,000	3,200			
Compressor Type			Rotary					
Fan motor Type			AC Motor					
Water side heat exchanger	Туре			Single-wall heat exchanger				
Air side heat exchanger	Туре		Fin-coil					
\A/=+=====	Pump head	m	5.5	5.5	5.5			
Water pump	Water volume	L/min	10	10	10			
Refrigerant	Type/Quantity	kg	R410A/0.7	R410A/0.9	R410A/1.0			
Reingerant	Throttle type			Electric expansion valve				
Weter sizeline	Water inlet pipe	mm	DN20	DN20	DN20			
Water pipeline Water outlet pipe		mm	DN20	DN20	DN20			
Controller		KJR-51/BMKE-A						
Hot water yield ³		m³/h	0.516	0.74	1.12			
Storage size of optional tan	k	L	100~250	150~300	250~500			

Remark:

1. The test conditions: outdoor temperature 7/6°C(DB/WB), inlet water temperature 30°C, outlet water temperature 35°C.

2. The specifications may be changed for product improvement, please refer to the nameplate.

3. The value is calculated based on the capability value and capability test condition.

KJR-51/BMKE-A

nita	
Ś	
Hot	
Wa	
ter	

Sa

re 30°C, outlet water temperature 35°C. ne nameplate. on.

Swimming Pool Application

Gildea

-

Nomenclature

Features

- R410A refrigerant
- ✤ Max. water output temperature: 35°C
- Automatic defrosting function
- Automatic start-up and shut-down functions
- Heating, cooling and punp mode
- Anti-corrosion titanium heat exchanger

Wired Controller

- Mechanical butoon
- LCD displays operation parameters
- Indicator light
- Heating, cooling and pump mode

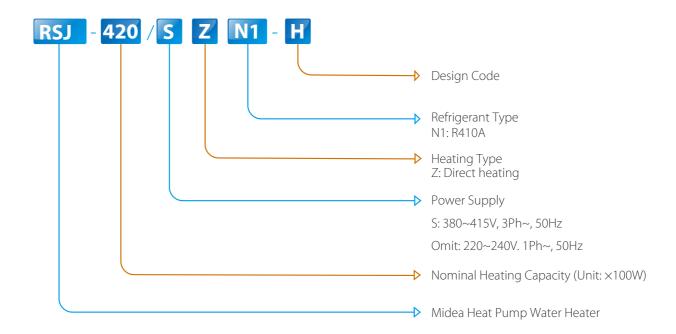
Specifications

Model			LRSJ-60/NYN1-A1	LRSJ-80/NYN1-A1	LRSJ-120/NYN1-A1	LRSJ-140/NYN1-A1	
Power supply		V/Ph/Hz	220-240/1/50				
	Capacity	kW	6.00	8.00	11.70	13.60	
	Input	kW	1.150	1.518	2.350	2.550	
Heating	COP		5.22	5.27	4.98	5.33	
	Ambient temperature	°C	-7~38	-7~38	-7~38	-7~38	
	Output water temperature	°C		Default 28°C	, 20°C∼35°C		
	Capacity	kW	4.00	5.80	8.25	10.35	
	Input	kW	1.25	1.50	2.50	2.90	
Cooling	EER		3.20	3.87	3.30	3.57	
	Ambient temperature	°C	15~43	15~43	15~43	15~43	
	Output water temperature	°C		Default 28°C	C, 10°C~30°C		
Max. current		A	6.3	8.3	14.4	16.0	
Dimension (W×H×D)		mm	1,015×705×385	1,015×705×385	1,050×855×315	1,050×855×315	
Packing (W×H×D)		mm	1,095×840×445	1,095×840×445	1,160×980×410	1,160×980×410	
Net/Gross weight		kg	58.5/67.5	66/75	75/85	75/85	
Outdoor noise level		dB(A)	58	58	58	58	
Compressor	Туре		Rotary	Rotary	Rotary	Rotary	
Fan motor	Туре		AC motor	AC motor	AC motor	AC motor	
Water side heat exchanger	Туре		Titanium-tube	Titanium-tube	Titanium-tube	Titanium-tube	
Air side heat exchanger	Туре		Fin-coil	Fin-coil	Fin-coil	Fin-coil	
Refrigerant	Type/Quantity	kg	R410A/1.0	R410A/1.25	R410A/1.6	R410A/1.85	
nenigerant	Throttle type		Capillary	Capillary	Capillary	Capillary	
Water pipeline	Water inlet pipe	mm	Φ50	Φ50	Φ50	Φ50	
	Water outlet pipe	mm	Φ50	Φ50	Φ50	Φ50	
	Drainage pipe	mm	Φ25	Φ25	Φ25	Φ25	
Wire controller			KJRH-90B/E	KJRH-90B/E	KJRH-90B/E	KJRH-90B/E	
Applicable range		m ³	40	50	60~85	75~100	

Remark:

1. The test conditions:

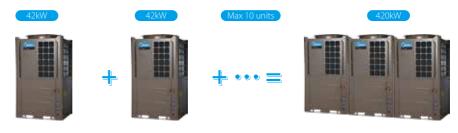
- Water Heating: outdoor temperature 24/19°C(DB/WB), inlet water temperature 27°C, outlet water temperature 29°C Water Cooling: outdoor temperature 35/24°C(DB/WB), inlet water temperature 27°C, the water flow volumn is same in both cooling and heating mode.
- 2. The specifications may be changed for product improvement, please refer to the nameplate.


Anti-corrosion titanium heat exchanger

KJRH-90B/E

Commercial Heat Pump Water Heater

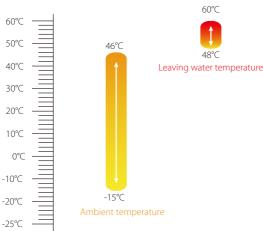
Nomenclature



Product lineup

Capacity (kW)	12	20	
Apperanace Series			
220~240V-1Ph	•		
380~415V-3Ph		•	

Features Wide application range


- ✤ 4 basic models with heating capacity ranging from 12kW to 80kW.
- Free modular combination.

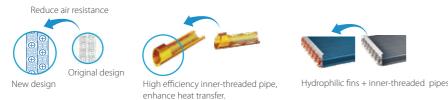
* Wide operation ambient temperature range.

Operates stably under extreme conditions, ranging from -15°C to 46°C.

High heating energy efficiency

The unit adopts heat pump principle, which absorbs heat from ambient air and releases it to the water to produce hot water.

↔ High performance fin-coil type heat exchanger is adopted at air side.


The new designed window fins enlarge the heat-exchanging area, decrease the air resistance, save more power and

enhance heat exchange performance.

Hydrophilic film fins and inner-threaded copper pipes optimize heat exchange efficiency.

The specially coated blue fins enhance durability and protect against corrosion from air, water and other corrosive agents,

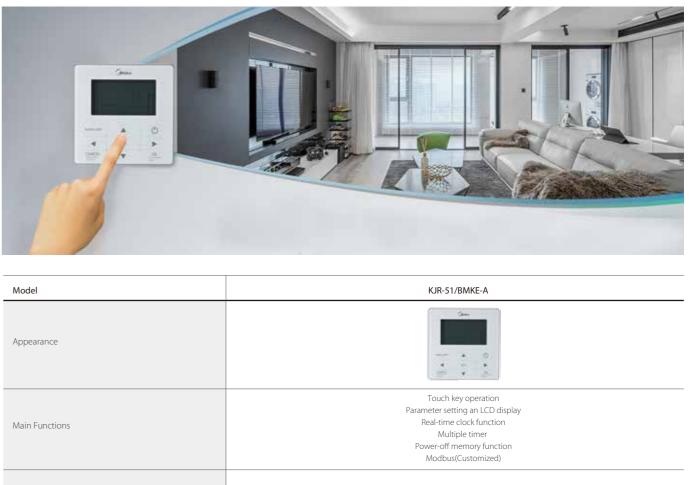
assuresa longer coil service life.

High efficiency tube-in-tube heat exchanger

Inner grooved copper pipe, increase area of heat exchanger, improve efficient.

Anti-corrosion shell increases the useful life of heat exchanger.

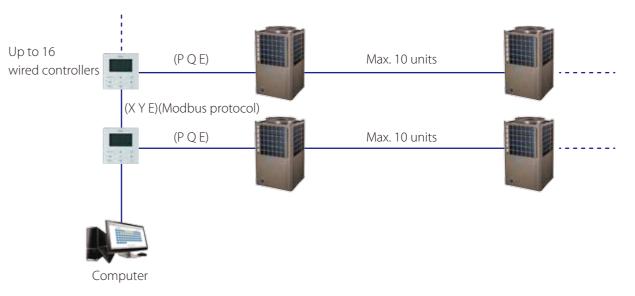
Advanced technology


Unique defrosting flow path.

Air side reserved special defrosting flow path, when the system is defrosting, the four-way valve is reversing, the system will absorb energy from special defrosting flow path, the defrosting progress will have no impact on water temperature.

- Electric water flow valve supplies hot water at a stable temperature and expands the life of compressor.
- Optimized fan blade edge by CFD programs with analyzing air pressure distribution.
- ↔ G-shape fin-coil heat exchanger to optimize air flow system of unit.

Easy control


Wired controller

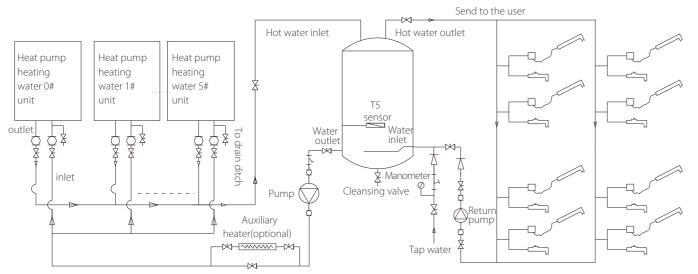
Model	
Appearance	
Main Functions	
Max. connection PCBs	

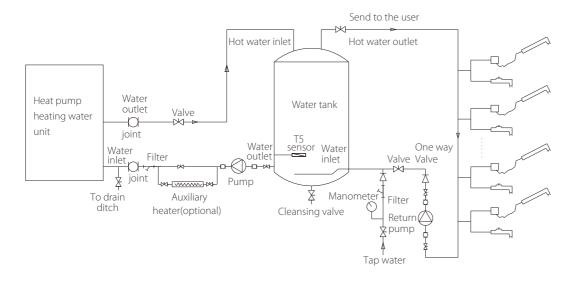
Modbus function

Modbus is an open protocol that is widely used, especially in BMS building control systems. Modbus function can be customized by adding X, Y, E ports on wired controller KJR-51/BMKE-A. It can connect Max. 16 wired controllers and each controller can control Max. 16 units.

16

Remote control functions for convenient operation.


There are ON/OFF, Heat/Cool and Alarm terminals ports on PCB, connect switches from these terminal ports and remote control functions can be easily realized.


Note: When use the remote control function, the wired controller will be invalid for OFF and mode selection.

Simple refrigeranting system diagram

Parallel connected heat pump system

Single connected heat pump system

Specifications

Model			RSJ-120/ZN1-540V1	RSJ-200/SZN1-540V1		
Power supply		V/Ph/Hz	220-240/1/50	380-415/3 / 50		
Running ambient temp		°C	-15~46	-15~46		
Outwater Temp °C			Default 56°C, 48°C~60°C			
	Capacity	kW	11.8	20.4		
Water Heating	Input	kW	2.95	5.23		
water neating	COP		4.00	3.90		
	Max. input current	A	18.0	13.0		
Unit dimension (W×H×D) mm		mm	790×1100×810	790×1100×810		
Packing dimension (W×H×D)		mm	860×1220×885	860×1220×885		
Net/Gross weight		kg	125/145	157/172		
Outdoor noise level		dB(A)	59	63		
Max. combination quantity Pieces		Pieces	6	6		
Compressor	Туре		Scroll	Scroll		
Compressor	Quantity	Pieces	1	1		
Fan motor	Туре		AC motor	AC motor		
Fall molor	Quantity	Pieces	1	1		
Air side heat exchanger	Туре		Fin-coil	Fin-coil		
Warer side heat exchanger	Туре		Tube-in-tube	Tube-in-tube		
Refrigerant	Refrigerant Type/Quantity	kg	R410A/1.55	R410A/2.9		
nengelan	Throttle type		Electric expansion valve			
Water pipe	water inlet pipe	mm	DN25	DN25		
marci hihe	water outlet pipe	mm	DN25	DN25		
Controller			KJR-51/BMKE-A	KJR-51/BMKE-A		
Hot Water Yield ³ m ³ /h			0.25	0.45		

Model			RSJ-420/SZN1-H	RSJ-800/SZN1-H
Power supply		V/Ph/Hz	380-415/3 / 50	380-415/3 / 50
Running ambient temp		°C	-15~46	-15~46
Outwater Temp		°C	Default 56°C,	48°C~60°C
	Capacity	kW	39.0	80.0
Natar Llasting	Input	kW	9.65	20.00
Water Heating	COP		4.04	4.00
	Max. input current	A	24.0	45.0
Unit dimension (W×H×D)	1	mm	1,015×1,775×1,026	1,995×1,770×1,025
Packing dimension (W×H×D)		mm	1,070×1,900×1,030	2,080×1,895×1,120
Net/Gross weight		kg	323/343	599/627
Outdoor noise level		dB(A)	66	68
Max. combination quantity		Pieces	4	2
C	Туре		Scroll	Scroll
Compressor	Quantity	Pieces	1	2
Fan motor	Туре		AC motor	AC motor
Fan motor	Quantity	Pieces	1	2
Air side heat exchanger	Туре		Fin-coil	Fin-coil
Warer side heat exchanger	Туре		Tube-in-tube	Tube-in-tube
Defricance	Refrigerant Type/Quantity	kg	R410A/4.5	R410A/2×4.4
Refrigerant Throttle type			Electric expansion valve	
Watar pipa	water inlet pipe	mm	DN32	DN50
Water pipe	water outlet pipe	mm	DN32	DN50
Controller	1		KJR-51/BMKE-A	KJR-51/BMKE-A
Hot Water Yield ³		m³/h	0.85	1.72

Remark:

1. The test conditions: outdoor temperature 20/15 $^{\circ}$ C(DB/WB), inlet water temperature 15 $^{\circ}$ C, outlet water temperature 55 $^{\circ}$ C.

The specifications may be changed for product improvement, please refer to the nameplate.
 The value is calculated based on the capability value and capability test condition.